31 research outputs found

    Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems

    Get PDF
    We study pseudopolynomial formulations for the classical bin packing and cutting stock problems. We first propose an overview of dominance and equivalence relations among the main pattern-based and pseudopolynomial formulations from the literature. We then introduce reflect, a new formulation that uses just half of the bin capacity to model an instance and needs significantly fewer constraints and variables than the classical models. We propose upper- and lower-bounding techniques that make use of column generation and dual information to compensate reflect weaknesses when bin capacity is too high. We also present nontrivial adaptations of our techniques that solve two interesting problem variants, namely the variable-sized bin packing problem and the bin packing problem with item fragmentation. Extensive computational tests on benchmark instances show that our algorithms achieve state of the art results on all problems, improving on previous algorithms and finding several new proven optimal solutions

    Logic based Benders' decomposition for orthogonal stock cutting problems

    Get PDF
    We consider the problem of packing a set of rectangular items into a strip of fixed width, without overlapping, using minimum height. Items must be packed with their edges parallel to those of the strip, but rotation by 90\ub0 is allowed. The problem is usually solved through branch-and-bound algorithms. We propose an alternative method, based on Benders' decomposition. The master problem is solved through a new ILP model based on the arc flow formulation, while constraint programming is used to solve the slave problem. The resulting method is hybridized with a state-of-the-art branch-and-bound algorithm. Computational experiments on classical benchmarks from the literature show the effectiveness of the proposed approach. We additionally show that the algorithm can be successfully used to solve relevant related problems, like rectangle packing and pallet loading

    Mathematical Models and Decomposition Algorithms for Cutting and Packing Problems

    Get PDF
    In this thesis, we provide (or review) new and effective algorithms based on Mixed-Integer Linear Programming (MILP) models and/or decomposition approaches to solve exactly various cutting and packing problems. The first three contributions deal with the classical bin packing and cutting stock problems. First, we propose a survey on the problems, in which we review more than 150 references, implement and computationally test the most common methods used to solve the problems (including branch-and-price, constraint programming (CP) and MILP), and we successfully propose new instances that are difficult to solve in practice. Then, we introduce the BPPLIB, a collection of codes, benchmarks, and links for the two problems. Finally, we study in details the main MILP formulations that have been proposed for the problems, we provide a clear picture of the dominance and equivalence relations that exist among them, and we introduce reflect, a new pseudo-polynomial formulation that achieves state of the art results for both problems and some variants. The following three contributions deal with two-dimensional packing problems. First, we propose a method using Logic based Benders’ decomposition for the orthogonal stock cutting problem and some extensions. We solve the master problem through an MILP model while CP is used to solve the slave problem. Computational experiments on classical benchmarks from the literature show the effectiveness of the proposed approach. Then, we introduce TwoBinGame, a visual application we developed for students to interactively solve two-dimensional packing problems, and analyze the results obtained by 200 students. Finally, we study a complex optimization problem that originates from the packaging industry, which combines cutting and scheduling decisions. For its solution, we propose mathematical models and heuristic algorithms that involve a non-trivial decomposition method. In the last contribution, we study and strengthen various MILP and CP approaches for three project scheduling problems

    An Improved Arcflow Model for the Skiving Stock Problem

    Get PDF
    Because of the sharp development of (commercial) MILP software and hardware components, pseudo-polynomial formulations have been established as a viable tool for solving cutting and packing problems in recent years. Constituting a natural (but independent) counterpart of the well-known cutting stock problem, the one-dimensional skiving stock problem (SSP) asks for the maximal number of large objects (specified by some threshold length) that can be obtained by recomposing a given inventory of smaller items. In this paper, we introduce a new arcflow formulation for the SSP applying the idea of reflected arcs. In particular, this new model is shown to possess significantly fewer variables as well as a better numerical performance compared to the standard arcflow formulation

    Mathematical models and decomposition methods for the multiple knapsack problem

    Get PDF
    We consider the multiple knapsack problem, that calls for the optimal assignment of a set of items, each having a profit and a weight, to a set of knapsacks, each having a maximum capacity. The problem has relevant managerial implications and is known to be very difficult to solve in practice for instances of realistic size. We review the main results from the literature, including a classical mathematical model and a number of improvement techniques. We then present two new pseudo-polynomial formulations, together with specifically tailored decomposition algorithms to tackle the practical difficulty of the problem. Extensive computational experiments show the effectiveness of the proposed approaches

    Training software for orthogonal packing problems

    Get PDF
    An open source architecture for the interactive solution of packing problems in two dimensions is presented. Although primarily developed for helping engineering students to understand the algorithmic approaches to the solution of difficult combinatorial optimization problems, the application can be useful to practitioners and developers thanks to its visual tools. The paper gives intuitive and formal definitions of the problems at hand, discusses two natural heuristic approaches, provides technical information on the application, and reports the results of classroom experimental testings

    Mathematical models for stable matching problems with ties and incomplete lists

    Get PDF
    We present new integer linear programming (ILP) models for NP-hard optimisation problems in instances of the Stable Marriage problem with Ties and Incomplete lists (SMTI) and its many-to-one generalisation, the Hospitals / Residents problem with Ties (HRT). These models can be used to efficiently solve these optimisation problems when applied to (i) instances derived from real-world applications, and (ii) larger instances that are randomly-generated. In the case of SMTI, we consider instances arising from the pairing of children with adoptive families, where preferences are obtained from a quality measure of each possible pairing of child to family. In this case we seek a maximum weight stable matching. We present new algorithms for preprocessing instances of SMTI with ties on both sides, as well as new ILP models. Algorithms based on existing state-of-the-art models only solve 6 of our 22 real-world instances within an hour per instance, and our new models solve all 22 instances within a mean runtime of 60 seconds. For HRT, we consider instances derived from the problem of assigning junior doctors to foundation posts in Scottish hospitals. Here we seek a maximum size stable matching. We show how to extend our models for SMTI to the HRT case. For the real instances, we reduce the mean runtime from an average of 144 seconds when using state-of-the-art methods, to 3 seconds when using our new ILP-based algorithms. We also show that our models outperform considerably state-of-the-art models on larger randomly-generated instances of SMTI and HRT.Comment: 31 pages, 11 tables, 1 figur

    BPPLIB: a library for bin packing and cutting stock problems

    Get PDF
    The bin packing problem (and its variant, the cutting stock problem) is among the most intensively studied combinatorial optimization problems. We present a library of computer codes, benchmark instances, and pointers to relevant articles for these two problems. The library is available at http://or.dei.unibo.it/library/bpplib. The computer code section includes twelve programs: seven are directly downloadable from the library page, while for the remaining five we provide addresses where they can be obtained or downloaded. Some of the codes for which we provide an original C++ implementation need an integer linear programming solver. For such cases, the library provides two versions: one that uses the commercial solver CPLEX, and one that uses the freeware solver SCIP. The benchmark section provides over six thousands instances (partly coming from the literature and partly randomly generated), together with the corresponding solutions. Instances that are difficult to solve to proven optimality are included. The library also includes a BibTeX file of more than 150 references on this topic and an interactive visual tool to manually solve bin packing and cutting stock instances. We conclude this work by reporting the results of new computational experiments on a number of computer codes and benchmark instances

    Mathematical models and decomposition algorithms for cutting and packing problems

    No full text
    corecore